Discovery of Asciminib (ABL001), an Allosteric Inhibitor of the Tyrosine Kinase Activity of BCR-ABL1

J Med Chem. 2018 Sep 27;61(18):8120-8135. doi: 10.1021/acs.jmedchem.8b01040. Epub 2018 Sep 7.

Abstract

Chronic myelogenous leukemia (CML) arises from the constitutive activity of the BCR-ABL1 oncoprotein. Tyrosine kinase inhibitors (TKIs) that target the ATP-binding site have transformed CML into a chronic manageable disease. However, some patients develop drug resistance due to ATP-site mutations impeding drug binding. We describe the discovery of asciminib (ABL001), the first allosteric BCR-ABL1 inhibitor to reach the clinic. Asciminib binds to the myristate pocket of BCR-ABL1 and maintains activity against TKI-resistant ATP-site mutations. Although resistance can emerge due to myristate-site mutations, these are sensitive to ATP-competitive inhibitors so that combinations of asciminib with ATP-competitive TKIs suppress the emergence of resistance. Fragment-based screening using NMR and X-ray yielded ligands for the myristate pocket. An NMR-based conformational assay guided the transformation of these inactive ligands into ABL1 inhibitors. Further structure-based optimization for potency, physicochemical, pharmacokinetic, and drug-like properties, culminated in asciminib, which is currently undergoing clinical studies in CML patients.

MeSH terms

  • Allosteric Regulation
  • Animals
  • Dogs
  • Drug Discovery*
  • Fusion Proteins, bcr-abl / antagonists & inhibitors*
  • Fusion Proteins, bcr-abl / genetics
  • Humans
  • Leukemia, Myelogenous, Chronic, BCR-ABL Positive / drug therapy*
  • Leukemia, Myelogenous, Chronic, BCR-ABL Positive / enzymology
  • Leukemia, Myelogenous, Chronic, BCR-ABL Positive / pathology
  • Male
  • Mice
  • Models, Molecular
  • Molecular Structure
  • Mutation
  • Niacinamide / analogs & derivatives*
  • Niacinamide / chemistry
  • Niacinamide / pharmacology
  • Phosphorylation
  • Protein Conformation
  • Protein Kinase Inhibitors / chemistry
  • Protein Kinase Inhibitors / pharmacology*
  • Pyrazoles / chemistry
  • Pyrazoles / pharmacology*
  • Rats
  • Rats, Sprague-Dawley
  • Tumor Cells, Cultured
  • Xenograft Model Antitumor Assays

Substances

  • Protein Kinase Inhibitors
  • Pyrazoles
  • asciminib
  • Niacinamide
  • Fusion Proteins, bcr-abl